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METHOD OF CONSTRUCTING A SINGLE EQUATION OF STATE 

SATISFYING THE REQUIREMENTS OF THE SCALING HYPOTHESIS 

V. A. Rykov UDC 536.71 

We present an equation of state which quantitatively and qualitatively describes 
correctly the regular part of the thermodynamic surface and also the region near 
the critical point. 

By a single equation of state, we mean a single structural form which within some given 
small error describes the experimental thermal and caloric data in the gas and liquid phases, 
and also on the liquid-vapor coexistence curve for temperatures ranging from T3 up to Tc, and 
which describes correctly all of the features of the behavior of the material over this tem- 
perature range [i]. 

Among the important features are the following [2]: 

i) The limit p ~ 0 and p ~ 0 (the equation of state of an ideal gas) 

p ( p - + O ,  T) = RpT, ( 1 )  

2) the equality of the chemical potentials on both branches of the liquid--vapor coexist- 
ence curve 

3) the Planck-~ibbs rule 

4) the critical condition 

,tt" - -  tt' = O, (2) 

dT ) r = T  e \ O r /~,=Oe,T=r c '  

I n  a d d i t i o n  t o  t h e s e  c h a r a c t e r i s t i c s  i t  i s  i m p o r t a n t  t o  n o t e  t h e  s i n g u l a r i t i e s  o f  t h e  
thermodynamic surface near the critical point. The modern view, based on accurate experi- 
mental research and the scaling theory of critical phenomena~ holds that the behavior of the 
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thermodynamic functions near the critical point (for pure materials) is singular in nature 
and can be described by power laws [3]: 

on the critical isotherm 

Ap D(AO) Iapl 6-~, (5) 

on the coexistence curve 

3,9 --: ~ B I~f, 

C~ = A o l k p l  -~,';~, C p . ~ K r  = o r, , 

on the critical isochore and elasticity line 

d2Pei ,  n = p +  [T]-~, 
d T  2 

(6) 

(7) 

(8) 

C~ = A  ~!~l -~ ,  C p ~ K T =  F • -v. (9) 

In the above relations ~, ~, ~, and V are the critical exponents which satisfy the Grif- 
fiths equalities [3]: ~ + 2B + y = 2, e + B(6 + I) = 2. 

It is well known that of the above relations (1)-(9), the analytic single equations of 
state that are normally used give a correct qualitative description only of (1)-(4) [4]. In 
principle, relations (5)-(9) cannot be satisfied with an analytic description of the thermo- 
dynamic surface [5]. 

In [6-121 the problem of working out a single equation of state free from the insuffi- 
ciencies present in the analytic equations was considered. The basic approach of [6, 7] is 
the use of relations coupling the internal energy of the material u(0, T) and the thermal 
parameters: 

0p 

This  w i l l  g u a r a n t e e  t h a t  t h e  e q u a t i o n  o f  s t a t e  [7] g i v e s  t h e  i d e a l  gas  l i m i t  ( 1 ) ,  b u t  i t  does  
no t  c o r r e c t l y  r e p r o d u c e  t h e  t e m p e r a t u r e  d e p e n d e n c e  o f  t h e  s econd  v i r i a l  c o e f f i c i e n t .  

An a t t e m p t  to  o b t a i n  a s i n g l e  e q u a t i o n  o f  s t a t e  u s i n g  t h e  c o o r d i n a t e s  p ,  T and s a t i s f y -  
ing  ( 5 ) - ( 1 9 )  was made in  [8 ,  9 ] .  But i t  i s  t h e n  n e c e s s a r y  to  " m a t c h "  t h e  d e r i v a t i v e s  o f  t h e  
e n t h a l p y  i ( p ,  T) on t h e  c r i t i c a l  i s o c h o r e  [ 9 ] ,  and t h i s  i s  a c o m p l i c a t e d  m a t h e m a t i c a l  p r o b -  
lem in the coordinates p, T. 

In [10-12] the derivatives (~p/3v)T and d2p/dT ~ are analytic functions on the critical 
isochore and this does not satisfy (9) for K T and Cp; furthermore, it contradicts the scaling 
theory which predicts that d=p/dT = is nonanalytic on the critical isochore (8). 

Thus, the problem of constructing a single nonanalytic equation of state satisfying the 
requirements (5)-(9) of the scaling theory is still of current interest. In the present 
paper, we solve the problem using a single structural form of the free energy for the liquid 
and gas phases: 

,,0 T, I S T,)T=Ts ; I T,)  11, 
where Pn(Ts) and Ts(r are the equations of the elasticity line and coexistence curve, re- 
spectively; Fn(o , T) and Fr(P , T) are the nonanalytic and analytic parts of the function 
~o(p, T) = Fn(0 , T) + Fr(O, T). 

We first study how the requirement that the chemical potentials be equal on the coexist- 
ence curves Ts(P) [relation (2)] can be satisfied in our approach. 

We substitute (II) into the thermodynamic relation 1~(p, T) = F(p, T) + p(~F(p, T)/3p)T, 
and then equate the resulting values of ~(p, T) on the right and left branches of the coexist- 
ence curve. We then obtain 
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F(9', T~)--F(o",  r~) =Pn(r~)(v ' - -v ' ) .  (12) 

But (12) i s  i d e n t i c a l  to  (2) [ 1 ] .  

T h e r e f o r e  , t h e  form o f  t he  f r e e  e n e r g y  (11) g u a r a n t e e s  in  p r i n c i p l e  t he  e q u a l i t y  o f  the  
c h e m i c a l  p o t e n t i a l s  (2) on t he  e l a s t i c i t y  l i n e  pn(Ts)  and a l s o  t he  i n t e r n a l  c o n s i s t e n c y  o f  
v ' ,  v " ,  and Pn(Ts)  a t  each  p o i n t  on t he  c o e x i s t e n c e  c u r v e .  

The f u n c t i o n s  Pn(Ts)  and Ts(P)  a r e  g i v e n  in  t h e  form o f  [7 ,  1 3 ] :  

, T P.:(Ts - -  c) + 37~ (13 )  In Pn (Ts) = P-1 :'T8 -~ Po q- P1, s ~ 

T ~ ( 9 )  =.: Tc(1 -- D~ IApI',"~-i - D~Ap '~ -> D~Ap '9- § D~ Aft ~a ), (14) 

"4 J D~ +- "* 
where l - - D 0  § (--1) - I  n- (--1) (--1) : 0. 

The above forms f o r  Pn(Ts)  and Ts(P)  d e s c r i b e  t h e  l i q u i d - - v a p o r  phase  e q u i l i b r i u m  l i n e  
in  c o r r e s p o n d e n c e  w i t h  the  r e q u i r e m e n t s  o f  the  s c a l i n g  t h e o r y  ( 6 ) ,  (8 ) ,  and a l s o  have the  
f o l l o w i n g  p h y s i c a l l y  r e a s o n a b l e  forms in  the  l i m i t  o f  s m a l l  d e n s i t i e s  and p r e s s u r e s  [ 7 ] :  
In  Pn(Ts)  = P _ : / T s ,  Ts(P + O) - p.  

Using now the  method o f  l o o k i n g  f o r  the  s i n g u l a r  t e rms  in t he  thermodynamic  f u n c t i o n s  
d e s c r i b e d  above ,  we f i n d  a s t r u c t u r a l  form o f  the  f u n c t i o n  Fo(p ,  T) e n t e r i n g  (11 ) ,  which  
g u a r a n t e e s  t h a t  t he  s c a l i n g  r e l a t i o n s  ( 5 ) - ( 9 )  and a l s o  (3) and (4) w i l t  be s a t i s f i e d ,  and 
a l s o  q u a l i t a t i v e l y  r e p r o d u c e s  t h e  c o r r e c t  b e h a v i o r  a t  sma l l  d e n s i t i e s  and p r e s s u r e s .  

S i n c e  c l o s e  to  the  c r i t i c a l  p o i n t  t he  s c a l i n g  s i n g u l a r i t i e s  in  the  f u n c t i o n  F (p ,  T) 
a r e  g i v e n  [ a c c o r d i n g  t o  ( 5 ) - ( 9 ) ]  by power laws w i t h  n o n i n t e g r a l  e x p o n e n t s ,  we t a k e  as  a 
s t a r t i n g  p o i n t  t he  f o l l o w i n g  f u n c t i o n a l  f o r  the  n o n r e g u l a r  p a r t  o f  Fo (p ,  T ) :  

n t IZ~ 
~ ~ B~* 'kp  ~i ) , ( 1 5 )  

RT ' i=o 

where R i s  t h e  u n i v e r s a l  gas  c o n s t a n t ,  ( o : p / p c ;  % < % <  "" �9 ~ o < ~ <  - . - ;  ~ h : - (  t + 6 ) / ~ t -  

~/~; < =(1 § 6 ) l L - - ~ I ~  
On the  o t h e r  hand,  in  t he  r e g i o n  o f  sma l l  d e n s i t i e s  and p r e s s u r e s ,  a p h y s i c a l l y  c o r r e c t  

expression for the free energy has the form 

tza n4(i) ) 

RT ~-0 i=:0 ~ 1 Ap , (16) 

where Pi' Di -+' A i, Bj, and Cij are constants. 

We find relations between the exponents %( q0,, , %, qh, , ~, and ~2 and the critical 
exponents e, B, 6, and y and also conditions relating the coefficients of the expressions 
(15) and (16) such that the equation of state will satisfy relations (5)-(9). 

We substitute (15) and (16) into (ii) and express the thermodynamic functions KT(P , T), 
Cv(P , T), and p(p, T) in terms of derivatives of the free energy F(0, T) [2]. Then asymp- 
totically close to the critical point (Ap § 0, T -> 0) we represent Cv, KT~ and p on the 
critical isotherm (~ = 0), the coexistence curve IT = Ts(p)] , and on the critical isochore 
(Ao = 0) as power series in A0 and T. Substituting these series into the corresponding scal- 
ing relations (5)-(9) and using the Griffiths relations, we equate the exponents of the lead- 
ing terms on the right and felt sides of the resulting relations. We then find the required 
relations for q00, ~0, ~l, ~i, ~0, e~, q0, SJ, ~2 and ~, 8 and also for the coefficients Cij of (16): 

I % : ~ o : 0 ,  11o~, = 1-.g6, % E l = 2 - - a ,  % =  1 or2, ( 1 7 )  

e0~ 2 = 1--~ 6, ej~ 2 ~---2, $1~g : :  ~, 41 := 1 or 2, 

2C1o 4- 2C~o H- 1 -- 0, Ct0 ~- I -]- Zc[ :: 0, 

where Z c i s  t he  c r i t i c a l  c o m p r e s s i b i l i t y  and f = P _ I / T  c -- PIT c -- 3P3Tac �9 

(18) 

478 



It follows from (15)-(18) that the required expression for the function F(o, T) has the 
form 

F o (p, T) ~o~ 
RT =: lap] ~-~ [A (A~x {c' 4 A j '  -} B (B,.v '1~'-!- Bo)~-~l -i- In p q- 

na ' h ( i )  ( );) -- .a ~ ~ - -  1 Ap ~, 
~= :o /=o  

(19) 

where the coefficient~ Ci~ and the exponents ~,, <~, g2 satisfy the relations (17) and (18) 
and where x = 7/IADI I/g is the scaling variable and Ao, At, Bo, B~ > 0. 

We discuss the analysis of (19) in more detail. If we put ~J=~l=l in (19) then [12, 
14] the equation Atx + Ao = 0 is the equation of a pseudospinodal curve which is a set of 
singular points of C v on the thermodynamic surface, and the isotherms are discontinuous in 
the two-phase region on this curve. 

It follows from (19) that in the case ~i=~i =2 there is only one singular point on the 
thermodynamic surface, the critical point, and the isotherms in the two-phase region have the 
van der Waals form. 

We substitute (19) into (ii) and using the thermodynamic relation p = 0=(SF/~P)T obtain 
a single equation of state for the gas and liquid phases, which satisfies all of the require- 
ments (1)-(9): 

- -  . ; ( 2 0 )  
i=1 " /=o Pc 

here 

F, (p, T) : :  F2 (p, T) + F a (p, T); 

F2(p, T) = n (Ap)p [A/  (xr  B~: )&'+ A~ (x~"+ B~ )'<~1; 

Fa(9, T) = 9~osign(kp)[A* (r + B'so) ~2. (x*'-k B~ ).L-, }_ ,%"*~*~Do ]~g, ~ (x q' -F B~ )~'-'1; 

: AA ', : 4 / A 1 ,  . . . .  =, 

We discuss'how completely the equation of state (20) reproduces the regular part of the 
thermodynamic surface for small densities. Since pn(Ts) Io+o - exp (P*-I/0)~ where P*-I < 0, 
we obtain from (20) in the limit 0 + 0 

n--I 

Z = 1 -F X" H (4 (T) ~o ~ 4- 0 (9~), 
i : l  

(21) 

where 

R2 

: i  /=o 

v 1( #) 2 T  ' 

R~ D I T c 
: o 7 -  -{- i [ D ( -  + i~D.+,_-{- laD,7; -q - 1; 

P T 

--I i . . . .  1 1 ) D o - [ l  ! (*1 ~ - 1) D,'L I':~ (i,i- 1) D.j-  .... i:~ (i:i- 1) Dsl-. 
f i  v p - - 

It fo]lows from (2].) that if n : 3, our approach not only gives the correct limit to the 
equation of state of an ideal gas, but also gives the qua]itatively correct temperature de- 
pendence of the second and third virial coefficients. 
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Quantitative analysis was carried out on the equation of state (20) using the most re- 
liable F-w--T and Cv data on Ar [15-17]. Experimental data on C v were included together with 
the thermal data because the specific heat at constant volume is the most sensitive test of 
the accuracy of a thermal equation of state [18]. 

We used the following values of the parameters in the equation of state (20): ~ = i, 
'~I = i, ~I = 2 -- ~, ~o = l/B, ~2 = Y, ~I = 2/~, ~o = l/B, ~ = 0.116, ~ = 0.34. The functions 
Ts(p) and Pn(Ts) were chosen in correspondence with [7]. 

Because T + B*oIAOI I/B = 0 and T + B*iIApl I/~ = 0 are the equations of pseudospinodal 
curves, the nonlinear parameters B*0 and B*~ were determined from the relations B*o = 
y1~/BDo, B*~ = y2:/BDo, where Do =-0.6349, Yl = 1.41, y= = 1.07 [ii]. 

The mean-square deviations between the calculations using the equation of state (20) and 
the experimental data of [15-17] in the region 0.78 < T/T c < 2.7, 0.2 J m ~ 2.1 were as fol- 
lows: the density in the single-phase region ~Psp = 0.21%, the specific heat at constant vol- 
ume ~C v = 3.7%, the density on the coexistence curve ~p = 0.34%, and the pressure on the 
elasticity line ~Pn = 0.12%. 

Therefore, our equation of state (20) satisfies all of the requirements (1)-(9) and 
gives the correct temperature dependence of the leading virial coefficients; in this respect, 
it compares favorably to the equations of state in [6, 7]. Also, the presence of the deriva- 
tive Tn'(p) in the equation of state of [6, 7] makes it difficult to control the growth of 
errors in the region of small densities. Equation (20) is free from this problem. To a large 
extent, this explains its better accuracy in the single-phase region of the thermodynamic sur- 
face in comparison with [6, 7]. 

NOTATION 

~, chemical potential; ~, density; p, pressure; T, absolute temperature; R, universal 
gas constant; T3, triple point; Vc, Pc, Tc, Pc, critical parameters; v, specific volume; 
Pn(Ts), elasticity line; Ts, coexistence curve; Ap = (p -- pc)/Pc, Ap = (p -- pc)/Pc, �9 = 
(T -- Tc)/Tc; ~' and ~", chemical potentials on the coexistence curve; Cv, heat capacity at 
constant volume; Cp, heat capacity at constant pressure; KT, isothermal compressibility; 
Pci(T), critical isochore; F, free energy; ~, B, ~, Y, critical exponents; Zc, critical com- 
pressibility; Z, compressibility; p' and p", values of the density on the vapor and liquid 
branches of the coexistence curve. 
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DENSITY OF ADSORBED WATER IN POWDER SYSTEMS. 3. 7-AI=O3 

P. P. Olodovskii UDC 541.182:550.461 

The choice of dispersion medium is considered. Estimates are made of the den- 
sity of water adsorbed on y-AI203. 

The measurement methods and techniques have been given in [I, 2]. The dispersion media 
were nitrobenzene and toluene. Figure 1 shows the results on the density of y-AI203 as a 
function of water content. 

There is a clear-cut effect on the density from the adsorbed water concentration in the 
dependence of the adsorbent mass or m/V relation (m is the mass of dehydrated adsorbent and V 
is the volume of the dispersed system). 

The experiments showed that nitrobenzene is a liquid of zero effect in relation to u 
A1203, since the density of the dehydrated solid phase measured with this medium is indepen- 
dent ofm/V. However, Fig. Ib shows that the density of the adsorbent in the same state as 
measured in toluene decreases as m/V increases, which indicates that the concentration of the 
liquid molecules in the surface layers of the dehydrated so]id phase is less than in the bulk. 

We now examine the changes in the relative densities of the dispersion media as affected 
by the water contents. The quantities are calculated from 
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